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Abstract Free vibrations of a spinning disk–shaft system are analysed using the finite-element method.
The spinning disk is described by the Kirchhoff plate theory. The shaft is modelled by a rotating beam.
Using Lagrange’s principle and including the rigid-body translation and tilting motion, equations of motion
of the spinning flexible disk and shaft are derived consistently to satisfying the geometric compatibility
conditions on the internal boundaries among the substructures. The finite-element method is then used to
discretize the derived governing equations. The method is applied to the shaft–disk spinning system. The
sensitivity to the running speed as well as the effect of both disk flexibility and boundary condition on the
natural frequencies of the spinning system are numerically investigated.

Keywords Finite-element method · Natural frequencies · Sensistivity analysis · Spinning disk

1 Introduction

A spinning shaft–disk system (Fig. 1) serves as a model for many rotating systems such as circular saws,
turbomachinery, rotors, etc. In these applications, the flexibility of the disk and the shaft may be important
and one has to use a coupled vibration model that admits elastic deflection of both components.

Research on these and similar applications has generated large bodies of literature on the dynamics
of spinning shafts and spinning disks in the absence of coupling. However, relatively little work has been
done on coupled disk–shaft dynamics.

Chivens and Nelson [1] analytically obtained the natural frequencies and critical speed of an axisymmet-
ric disk–spindle system coupled through a thin rigid clamp. They concluded that the disk flexibility changes
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Fig. 1 Spinning system DiskFlexible shaft
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the natural frequencies but has little effect on the critical speeds. Flowers and Ryan [2] and Flowers and
Wu [3] examined coupled disk–spindle dynamics for turbomachinery applications. Jang et al. [4] carried
out a free-vibration analysis of a spinning flexible disk–spindle system supported by a ball bearing and a
flexible shaft using the finite-element method and substructure synthesis. Lee [5] and Lim [6] examined the
coupled vibration of disk–spindles in the context of hard-disk drives. Parker [7] and Parker and Sathe [8]
formulated the rotating-system problem in terms of extended operators that make the gyroscopic nature
of the system evident. Shen and Ku [9] examined the related problem of vibration of multiple elastic disks
mounted on a rigid spindle supported by flexible bearings.

In this paper, equations of motion for a spinning flexible disk including the rigid-body motion are derived
by using the Kirchhoff theory and Lagrange’s method. A finite-element method is used to discretize each
component of the disk–shaft system. This method is used to investigate the influence of the flexibility of
the disk on the natural frequencies of the system.

2 Equation of motion

Approximations of the governing equations of each component in the disk–shaft system are derived by
using a finite-element method with consistent variables to satisfy the geometric compatibility conditions
at internal interfaces. The motion of the rotating shaft can be described by the Euler beam. The motion
of the spinning disk includes its rigid-body motion and its elastic deformation. Introducing the rigid-body
motion of the spinning disk can satisfy the geometric compatibility between the disk and shaft interface.

2.1 Rotating-shaft equation of motion

The shaft is considered flexible. It is modelled by a beam with constant circular section and characterized by
its kinetic and deformation energies. Its motion results from axial displacement and bending deformations
in the xz- and yz-planes (Fig. 2).

The kinetic energy of the shaft is put in the following form [10]:

Eks = ρS
2

∫ L

0

(
u̇2

x + u̇2
y + u̇2

z

)
dz + ρ

2
I

∫ L

0

(
θ̇2

x + θ̇2
y

)
dz + 2ρIΩ

∫ L

0

(
θ̇xθy

)
dz + ρILΩ2, (1)

where ux, uy are the bending displacements in the x- and y-directions, and uz the axial displacement in the
z-direction; θx and θy are small angles twist rotations around the x- and y-directions. Further ρ, S, L and
I are the density, cross-sectional area, length and area moment of inertia of a shaft, respectively, and Ω is
the shaft running speed.

The deformation energy of a rotating shaft is expressed as follows [10]:

Eds = 1
2

∫ L

0
ES

(
∂uz

∂z

)2

dz + 1
2

∫ L

0
EI

((
∂θx

∂z

)2

+
(

∂θy

∂z

)2
)

dz, (2)

where E is young’s modulus of shaft.
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Fig. 2 Rotating shaft
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Fig. 3 Rotating flexible disk with rigid-body motion

The finite element used to discretize the shaft consists of a beam element of two nodes; the nodal
displacement vector includes: four lateral displacements, four bending rotation angles (slopes) and two
axial displacements. Its expression is:

δ = [
ux1, uy1, uz1, θx1, θy1, ux2, uy2, uz2, θx2, θy2

]T , (3)

The displacements and the slopes along the shaft elements are represented by shape functions as follows:⎧⎨
⎩

ux

uy

uz

⎫⎬
⎭ = [N] {δ}, (4)

and

{
θx

θy

}
=

⎧⎪⎨
⎪⎩

−∂uy

∂z
∂ux

∂z

⎫⎪⎬
⎪⎭ =

[ −1 0
0 1

]
[D] {δ} , (5)

where [N] is the matrix of shape functions [10]:

[N] =
⎡
⎣ β1 0 0 0 γ1 β2 0 0 0 γ2

0 β1 0 −γ1 0 0 β2 0 −γ2 0
0 0 α1 0 0 0 0 α2 0 0

⎤
⎦ , (6)

βi, and γi are the typical displacement functions of a beam in bending:

β1 (z) = 1 − 3 z2

L2 + 2z3

L3 , β2 (z) = 3z2

L2 − 2z3

L3 , (7, 8)

γ1 (z) = −z + 2z2

L
− z3

L2 , γ2 (z) = −z2

L
+ z3

L2 ; (9, 10)

further αi are the typical displacement functions of a beam in traction-compression:

α1 = 1 − z
L

, α2 = z
L

, (11, 12)

and [D] = ∂

∂z

[
β1 0 0 0 γ1 β2 0 0 0 γ2
0 β1 0 −γ1 0 0 β2 0 −γ2 0

]
, (13)
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Upon substitution Eqs. 4 and 5 in the expressions (1), (2), Lagrange’s equations provide the equation of
motion of the shaft:

[MS]
{
δ̈
} + Ω [GS]

{
δ̇
} + [KS] {δ} = {0}, (14)

where [MS], [GS] and [KS] are, respectively, mass, gyroscopic and stiffness matrices of the shaft which may
be expressed as:

[MS] = ρS
∫ L

0
[N]T [N] dz + ρI

∫ L

0
[D]T [D] dz, (15)

[GS] = ρI
∫ L

0
[D]T

[
0 −1
1 0

]
[D] dz, (16)

[KA] = EI
∫ L

0
[B]T [B] dz, (17)

with

[B] = ∂2

∂z2 [N] . (18)

2.2 Rotating-disk equation of motion

Figure 3 shows a spinning flexible disk with a constant angular speed Ω, and undergoing an infinitesimal
rigid-body motion as well as an elastic deformation. The local reference frame, R2(O2, x2, y2, z2) is located
at the centre of the disk after it has undergone the infinitesimal rigid body translation (XD, YD, ZD) and
tilting motion (θx, θy) with respect to the inertial reference frame R(O, x, y, z); the elastic deformation of
the disk is observed with respect to the local reference frame R2(x2, y2, z2).

The displacements due to elastic deformation are expressed by the Kirchhoff plate theory as follows
[11, Chapter 4],

U =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(x, y, z, t) = z
∂ w (x, y, t)

∂x
v (x, y, z, t) = z

∂ w (x, y, t)
∂y

w(x, y, z) = w (x, y, t)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (19)

where w is the displacement in the z-direction in the middle plane of a disk.
In Fig. 3, the position vector of a point M in the disk is expressed as follows:

−−→
OM = �rD1 + �rD2, (20)

where �rD1 is the position vector in the inertial reference frame to the origin of the local reference frame
and �rD2 is the position vector of a point in the disk with respect to the local reference frame. They can be
expressed as follows:
�rD1 = XD �x + YD �y + ZD �z, (21)

�rD2 = [
(x + u) cos θ + (y + v) sin θ

] �x2 + [
(x + u) sin θ + (y + v) cos θ

] �y2 + w �z2, (22)

where θ = Ωt, and x, y are the distance in the x- and y-directions from the centre of a disk to a point before
elastic deformation. The velocity of the point M in the disk �VD can be written as the time derivative of the
position vector,

�VD = d
−−→
OM
dt

. (23)

The kinetic energy of the disk considered as thin can be expressed as follows:

EkD = 1
2
ρD h

∫
A

�VD �VDdA, (24)

where ρD and h are the density and thickness of the disk, respectively, and A is its area.
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The deformation energy of the disk can be expressed as follows [11, Formula 4.2.55]:

EDD = 1
2

∫

A

{χ}T [Hf ]{χ}dA, (25)

where, {χ} is the curvature vector [11, Formula 4.2.55 ]:

{χ}T = −
{

∂2w
∂x2

∂2w
∂y2 2

∂2w
∂y∂x

}T

, (26)

[
Hf

]
is the elasticity matrix due to bending motion [11, Formula 4.2.4]:

[
Hf

] = E h3

12 (1 − ν2)

⎡
⎣ 1 ν 0

ν 1 0
0 0 1−ν

2

⎤
⎦ , (27)

E and ν are Young’s modulus and the Poisson ratio.
Applying Lagrange’s principle with Eqs. 24 and 25, results in six nonlinear equations of the spinning

disk under the coupled rigid-body motion and elastic deformation. Under the assumption of infinitesimal
rigid-body motion, the derived equations can be linearized with respect to θx, and θy as follows:

ρDh ẌD = 0, (28)

ρDhŸD = 0, (29)

ρDh
(
Z̈D + ẅ

) = 0, (30)

ρDh
(

θ̈xx2 sin2 θ + θ̈xy2 cos2 θ + x2Ωθ̇y + y2Ωθ̇y

+wxΩ2 sin θ + wyΩ2 cos θ + ẅx sin θ + ẅy cos θ

)
= 0, (31)

ρDh
(

θ̈yx2 cos2 θ + θ̈yy2 sin2 θ + x2Ωθ̇x + y2Ωθ̇x

−wxΩ2 cos θ + wyΩ2 sin θ − ẅx cos θ + ẅy sin θ

)
= 0, (32)

ρh
(
θ̈x (x sin θ + y cos θ) + θ̈y (y sin θ − x cos θ) + 2θ̇xΩ (x cos θ − y sin θ) + 2θ̇yΩ (y cos θ + x sin θ)

)

+ ρh
(
Z̈D + ẅ

) − ∂2Mx

∂x2 − ∂2My

∂y2 − 2
∂2Mxy

∂xy
= 0, (33)

where Mi (i = x, y, z) are the internal moments in the middle plane of a disk and they are defined as
follows[11, Chapter 4]:

Mx = − E h3

12 (1 − ν2)

(
∂2w
∂xz + ν

∂2w
∂y2

)
, (34)

My = − E h3

12 (1 − ν2)

(
ν
∂2w
∂x2 + ∂2w

∂y2

)
, (35)

Mxy = E h3

12 (1 + ν)

∂2w
∂y∂x

, (36)

The weak form of Eqs. 28–33 of the disk is expressed as follows:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X
Y
Z
θX
θY

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

T ⎡
⎢⎢⎢⎢⎣

MD 0 0 0 0
0 MD 0 0 0
0 0 MD 0 0
0 0 0 ID 0
0 0 0 0 ID

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẌD

ŸD

Z̈D
θ̈X
θ̈y

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+ Ω

{
θX
θY

}T [
0 2ID

−2ID 0

] {
θ̇x

θ̇y

}

+
∫

A

{
Z
W

}T [
0 ρDh

ρDh 0

] {
Z̈D
ẅD

}
dA
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+ ρDh
∫

A

⎧⎨
⎩

θX
θY
W

⎫⎬
⎭

T ⎡
⎣ 0 0 x sin θ + y cos θ

0 0 y sin θ − x cos θ

x sin θ + y cos θ y sin θ − x cos θ 0

⎤
⎦

⎧⎨
⎩

θ̈x

θ̈y

ẅD

⎫⎬
⎭dA

+ 2ρDh Ω

∫
A

⎧⎨
⎩

θX
θY
W

⎫⎬
⎭

T ⎡
⎣ 0 0 y sin θ − x cos θ

0 0 − (x sin θ + y cos θ)

x cos θ − y sin θ x sin θ + y cos θ 0

⎤
⎦

⎧⎨
⎩

θ̇x

θ̇y

ẇD

⎫⎬
⎭dA

+ ρDh
∫

A
W ẅDdA + 2ρDh Ω

∫
A

[(
yẇ

∂W
∂x

− xẇ
∂W
∂y

) ]
dA

− ρD h Ω2
∫

A
y2 ∂W

∂x
∂w
∂x

+ x2 ∂W
∂y

∂w
∂y

dA

+ 1
2

∫

A

{χ}T [Hf ] {χ} dA = 0. (37)

The finite element used to discretize the disk consists of a triangular element with three nodes (DKT ele-
ments). It is appropriate to analyze the circular disk and it gives satisfactory solutions with a small number
of elements. The shape function of the transverse displacement uses a conforming Kirchhoff interpolation
function〈Nw〉 [11]:

w = 〈
Nw〉 {δD} , (38)

where δD = [
w1, βx1, βy1, w2, βx2, βy2, w3, βx3, βy3

]T is the nodal displacement vector.

βxi = −∂wi

∂x
, βyi = −∂wi

∂y
, i = 1, 3 (39, 40)

The following element matrix equations of the disk can be obtained after substituting Eq. 38 in Eq. 37:[
MR

D

]
is the inertia matrix corresponding to the rigid-body motions:

[
MR

D

]
=

⎡
⎢⎢⎢⎢⎣

MD 0 0 0 0
0 MD 0 0 0
0 0 MD 0 0
0 0 0 ID 0
0 0 0 0 ID

⎤
⎥⎥⎥⎥⎦ , (41)

where MD and ID are the disk mass and mass moment of inertia, respectively.
[
GR

D

]
is the element gyro-

scopic matrix corresponding to the rigid-body tilting ( θx, θy):[
GR

D

]
=

[
0 2ID

−2ID 0

]
, (42)

while
[
MRF

D1

]
is the element mass matrix coupled with the axial rigid translation and transverse displace-

ment:[
MRF

D1

]
= ρDh

∫
�e

〈
Nw〉

d� (43)

and
[
MRF

D2

]
is the element mass matrix coupled with the rigid-body tilting and transverse displacement.

Further
[
MRF

D2

]
= ρDh

∫
�e

⎧⎨
⎩

x sin θ + y cos θ

y sin θ − x cos θ

0

⎫⎬
⎭

〈
Nw〉

d�, (44)

while
[
GRF

D

]
is the element gyroscopic matrix coupled with the rigid-body tilting and transverse displace-

ment defined by

[
GRF

D

]
= 2ρDh

∫
�e

⎧⎨
⎩

y sin θ − x cos θ

−(x sin θ + y cos θ)

0

⎫⎬
⎭

〈
Nw〉

d�, (45)
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[
MF

D

]
is the element mass matrix due to the transverse displacement:

[
MF

D

]
= ρDh

∫
�e

{
Nw} 〈

Nw〉
d�, (46)

[
GF

D

]
is the element gyroscopic matrix due to the transverse displacement:

[
GF

D

]
= ρD h

∫
�e

(
y

{
Nw} 〈

∂Nw

∂x

〉
− x

{
Nw} 〈

∂Nw

∂y

〉)
d�, (47)

[
NF

D

]
is the centrifuge effect matrices due to the transverse displacement:

[
NF

D

]
= ρD h

∫
�e

(
y2

{
∂Nw

∂x

} 〈
∂Nw

∂x

〉
+ x2

{
∂Nw

∂y

} 〈
∂Nw

∂y

〉)
d�, (48)

[
KF

D

]
is the element stiffness matrix due to the transverse displacement:

[
KF

D

]
=

∫
�e

〈χ〉 [
Hf

] {χ}d�, (49)

Then the equation of motion of a spinning disk can be obtained:

[MD]
{
δ̈D

} + Ω[GD]
{
δ̇D

} +
([

KF
D

]
− Ω2

[
NF

D

])
{δD} = {0}, (50)

where [MD] is the mass matrix:

[MD] =
[ [

MF
D

] [
MRF

D

]
[
MRF

D

] [
MR

D

]
]

, (51)

[GD] is gyroscopic matrix (skew-symmetric):

[GD] =
[ [

GF
D

] [
GRF

D

]
− [

GRF
D

] [
GR

D

]
]

, (52)

{δD}, {
δ̇D

}
and

{
δ̈D

}
are, respectively, nodal disk displacement, velocity and acceleration vectors.

2.3 Global equation of motion

The element matrix equations derived in the previous sections are used with the geometric compatibility
in the internal boundaries taken into account: (node where the disk is connected to the shaft (Fig. 1)):

XD = uc
x, YD = uc

y, ZD = uc
z, (53)

θx = −∂uc
y

∂z
, θy = −∂uc

x

∂z
. (54)

where superscript c denotes the deformation of the shaft at which the disk is connected.
Then, the matrix-vector equation of the entire shaft–disk system (Fig. 1) can be expressed as follows:

[MT]
{
δ̈
} + Ω[GT]

{
δ̇
} +

(
[KT] − Ω2 [NT]

)
{δ} = {0}. (55)

where [MT], [GT], [KT] and [CT] are, respectively, global mass, gyroscopic, stiffness and centrifuge
matrices; {δ} ,

{
δ̇
}

and
{
δ̈
}

are, respectively, global nodal displacement, velocity and acceleration vectors.
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3 Sensitivity of a disk–shaft system to the running speed

In high-speed applications (e.g., aircraft engines), gyroscopic effects may significantly alter a system’s sta-
bility and dynamic behaviour. Eigenvalue derivatives evaluated for Ω = 0 are calculated to assess the
influence of the operating speed on the natural frequency spectrum. The associated eigenvalue problem of
Eq. 55 is obtained from the separable solution q = φiejωit:{
−ω2

i [MT] + j Ω [GT] ω+
i

(
[KT] − Ω2 [NT]

)}
φi = 0. (56)

The eigensensitivity analysis [12] calculates the natural frequency and vibration-mode derivatives with
respect to the operating speed. When it is assumed that a zero-speed natural frequency ωi has mul-
tiplicity m and arbitrarily chosen independent eigenvectors are � = 〈γ1, . . . , γm〉T with normalization
�T [MT] � = Im×m, differentiation of Eq. 56 with respect to Ω yields:([

K̃T

]
− ω2

i [MT] + j Ω [GT] ωi

)
φ′

i + (−2ωiω
′
i [MT] + jωi [GT] + j Ω [GT] ω′

i
)
φi = 0, (57)

where[
K̃T

]
= [KT] − Ω2 [NT] . (58)

Evaluation of Eq. 58 at Ω = 0 yields:(
[KT] − ω2

i [MT]
)

φ′
i = (

2ωiω
′
i [MT] − jωi [GT]

)
φi. (59)

Note that φi can be written as a linear combination of eigenvectors �:

φi = � ai (60)

where the ai are uniquely obtained with the normalization aT
i ai = 1.

From

h = (
2ωiω

′
i [MT] − jωi [GT]

)
� ai, (61)

the m solvability conditions γ1h = · · · = γmh = 0 of the equation yield the symmetric m × m Hermitian
eigenvalue problem,

Dai = ω′
iai, (62)

where D = 1
2

j �T [GT] �. (63)

The natural-frequency sensitivities ω′
i are obtained from the eigenvalues of Eq. 62.

For distinct modes at Ω = 0, Eq. 62 becomes a scalar equation. Hence ω′
i = 0 because γ T

i [GT] γi = 0
for real γi and skew-symmetric [GT]. The result ω′

i = 0 indicates the natural frequencies of these modes
are hardly affected by the operating speed.

For modes having a multiplicity m = 2 at Ω = 0:

� = 〈γ1, γ2〉T, (64)

D can be written as:

D =
[

0 γ T
1 [GT] γ2

−γ T
1 [GT] γ2 0

]
(65)

and its eigenvalues are:

ω′
1,2 = ±γ T

1 [GT] γ2/2. (66)

This expression yields eigensolution approximations according to,

ωi − ωi0 = (Ω − Ω0) ω′
i. (67)

For Ω0 = 0 and ωi0 the corresponding eigenvalue, we get,
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ωi = ωi0 + Ω ω′
i. (68)

According to Eq. 68, the degenerate zero-speed mode natural frequencies split into distinct ones as the
operating speed increases.

4 Numerical results

To obtain the system’s natural frequencies, the equation of motion of a global disk–shaft system (Eq. 55) is
transformed to the state space matrix-vector equation, and the associated eigenvalue problem is solved. A
computer program written in MATLAB, the organization chart of which is presented in Fig. 4, is developed
to analyze the natural frequencies of a disk–shaft system as shown in Fig. 1.

4.1 Validation

In order to validate the developed calculation, the obtained natural frequencies of a single spinning disk
(Fig. 5), with fixed boundary condition at its inner radius and undergoing the infinitesimal rigid-body
motion as well as an elastic deformation, are compared with those found by Jang et al. [4] (Table 1). The
disk has an outer diameter of 47·5 mm, an inner diameter of 15 mm and a thickness of 0·8 mm. It is made
of aluminium.

Simulation results agree with those found by Jang and Lee within an 8% error.

4.2 Coupled vibration mode in a disk–shaft system

The studied disk–shaft is showed in Fig. 1. The shaft has a length of L = 300 mm and a diameter of
10 mm with simply supported boundary condition at the two extremities. A disk of 100 mm in diame-
ter and 3 mm in thickness is mounted on the shaft at 75% of the shaft length. Both disk and shaft are
made of steel. Figure 6 shows the finite-element model of the studied system. The disk is divided into

Fig. 4 Organization chart
of developed computer
program
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Fig. 5 A spinning disk Fig. 6 Finite-element model of a disk–shaft system

Table 1 Comparison between simulated results and those found by Jang et al. [4]

Mode Simulated results Natural frequencies found by Jang et al. [4]

Ω = 0 Ω = 5000 rpm Ω = 0 Ω = 5000 rpm

1 646 Hz 716 Hz 625 Hz 710 Hz
646 Hz 551 Hz 625 Hz 547 Hz

2 658 Hz 601 Hz 633 Hz 630 Hz
3 746 Hz 884 Hz 740 Hz 902 Hz

746 Hz 649 Hz 740 Hz 600 Hz

60 triangular elements ((3 × 4) in the radial and circumferential directions, respectively) and it has 171
degrees of freedom. The shaft is divided into 20 beam elements, and it has 100 degrees of freedom.
Indeed, Figure 7 shows that convergence of the eigenvalues starts from a number of elements equal to
80.

Figure 8 shows the natural frequencies of a spinning system with flexible disk according the rotational
speed. There are four families of vibration modes:

(i) Shaft bending modes: the associated natural frequencies depend on the shaft rotation speed and
divide in two branches associated to the forward and backward whirl. This separation is due to gyro-
scopic effects (the gyroscopic matrix is skew-symmetric) and is confirmed by the sensitivity analysis
presented in Sect. 3.

(ii) Coupled modes: these are the coupled modes between the disk and shaft. They can be clearly
explained by the vibration-mode shape (Fig. 9). The first coupled mode is an axial vibration mode
coupled with the transverse displacement of the disk and axial motion of the shaft; it can be also
predicted and explained by the coupled governing equation of the disk in Eq. 30. The second coupled
mode is a rocking vibration mode coupled with the transverse displacement of the disk and tilting
motion of a shaft; it can be predicted and explained by the coupled governing equation of the disk in
Eqs. 31 and 32.
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Fig. 8 Natural frequencies of a spinning disk–shaft system

Fig. 9 Deformed shape of the second coupled
mode (5000 rpm)

Fig. 10 Deformed shape of the disk mode (5000 rpm)

(iii) Disk modes: these are independent of the running speed and cannot be separated in two branches
although they are double modes. The associated deformed shape (Fig. 10) shows that only the disk is
affected.

(iv) Longitudinal mode which is a distinct mode that is independent of the running speed.

4.3 Influence of disk flexibility

Figure 11 shows the variation of the system’s natural frequencies according to the running speed for two
cases: (a) system with a rigid disk and (b) system with a flexible disk.

Only two families of vibration modes are obtained for the case of a system with a rigid disk: shaft-bending
modes which are affected by disk mass and longitudinal mode. It should be noted that both shaft-bending
modes and longitudinal mode are independent of disk flexibility. Therefore, disk flexibility changes the
vibrational behaviour of the shaft–disk system.

4.4 Influence of boundary condition

The natural frequencies of the studied system were calculated for different types of boundary condi-
tions: the shaft is simply supported, clamped and supported by elastic bearings at its extremities (bearing
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Fig. 11 Natural frequencies of a spinning disk–shaft system. (a) rigid disk. (b) flexible disk (· · ·· · · Longitudinal mode, ——
Bending modes, · · ·· · · Coupled modes, - - - - - - Disk mode)

stiffness kxx = kyy = 5·5105 N/m, kxy = kxy = 0). Table 2 presents the obtained results for a system at rest
(Ω = 0).

The clamped boundary condition for the two studied cases causes an increase of natural frequencies.
Inversely, the introduction of an elastic bearing decreases on the one hand the natural frequencies and on
the other adds supplementary modes.

5 Conclusion

The equations of motion for a flexible spinning disk–shaft system including infinitesimal rigid-body motion
as well as elastic deformation for describing disk motion have been derived by a finite-element method.The
system’s natural frequencies were calculated for different cases and the obtained results show that:

Table 2 Natural frequencies in Hertz for different boundary conditions

Modes Rigid disk Flexible disk

Simply supported Clamped Elastic bearing Simply supported Clamped Elastic bearing

1 151 346 132 122 277 107
151 346 132 122 277 107

2 612 915 431 528 652 383
612 915 431 528 652 383

3 1174 1400 768 692 887 597
1174 1400 768 692 887 597

4 2157 2597 1278 1375 1563 982
2157 2597 1278 1375 1563 982
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(i) The impact of gyroscopic effects is estimated by the natural-frequency sensitivity to the operating
speed. Longitudinal-mode natural frequencies are insensitive to the operating speed. The degenerate
zero-speed bending-mode natural frequencies split into distinct ones as the operating speed increases.

(ii) Both disk flexibility and boundary conditions affect the natural frequencies of the system and conse-
quently vibratory behaviour, as well as critical speeds, are also affected. The disk flexibility introduces
supplementary modes and gives account of disk modes. The fixed boundary condition makes the sys-
tem more rigid, contrary to the case involving an elastic bearing.

In a future work, we will be interested in the study of the dynamic behaviour of a spinning shaft–disk
system in the presence of geometrical defects. We will develop a mathematical model that is able to describe
these defects.
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